

AS and A level Further Mathematics Core Pure Mathematics

Practice Paper Matrix algebra (part 2)

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (i)

$$
\mathbf{A}=\left(\begin{array}{cc}
\frac{1}{\sqrt{ } 2} & \frac{-1}{\sqrt{ } 2} \\
\frac{1}{\sqrt{ } 2} & \frac{1}{\sqrt{ } 2}
\end{array}\right)
$$

(a) Describe fully the single transformation represented by the matrix \mathbf{A}.

The matrix \mathbf{B} represents an enlargement, scale factor -2 , with centre the origin.
(b) Write down the matrix \mathbf{B}.
(ii)

$$
\mathbf{M}=\left(\begin{array}{cc}
3 & k \\
-2 & 3
\end{array}\right), \quad \text { where } k \text { is a positive constant. }
$$

Triangle T has an area of 16 square units.
Triangle T is transformed onto the triangle T^{\prime} by the transformation represented by the matrix \mathbf{M}.

Given that the area of the triangle T^{\prime} is 224 square units, find the value of k.
2.

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)
$$

The transformation represented by \mathbf{B} followed by the transformation represented by \mathbf{A} is equivalent to the transformation represented by \mathbf{P}.
(a) Find the matrix \mathbf{P}.

Triangle T is transformed to the triangle T^{\prime} by the transformation represented by \mathbf{P}.
Given that the area of triangle T^{\prime} is 24 square units,
(b) find the area of triangle T.

Triangle T^{\prime} is transformed to the original triangle T by the matrix represented by \mathbf{Q}.
(c) Find the matrix \mathbf{Q}.
3.

$$
\mathbf{X}=\left(\begin{array}{ll}
1 & a \\
3 & 2
\end{array}\right) \text {, where } a \text { is a constant. }
$$

(a) Find the value of a for which the matrix \mathbf{X} is singular.

$$
\mathbf{Y}=\left(\begin{array}{rr}
1 & -1 \\
3 & 2
\end{array}\right)
$$

(b) Find \mathbf{Y}^{-1}.

The transformation represented by \mathbf{Y} maps the point A onto the point B.
Given that B has coordinates $(1-\lambda, 7 \lambda-2)$, where λ is a constant,
(c) find, in terms of λ, the coordinates of point A.
4. (i)

$$
\mathbf{A}=\left(\begin{array}{cc}
5 k & 3 k-1 \\
-3 & k+1
\end{array}\right), \quad \text { where } k \text { is a real constant. }
$$

Given that \mathbf{A} is a singular matrix, find the possible values of k.
(ii)

$$
\mathbf{B}=\left(\begin{array}{cc}
10 & 5 \\
-3 & 3
\end{array}\right)
$$

A triangle T is transformed onto a triangle T^{\prime} by the transformation represented by the matrix \mathbf{B}.

The vertices of triangle T^{\prime} have coordinates $(0,0),(-20,6)$ and $(10 c, 6 c)$, where c is a positive constant.
The area of triangle T^{\prime} is 135 square units.
(a) Find the matrix \mathbf{B}^{-1}.
(b) Find the coordinates of the vertices of the triangle T, in terms of c where necessary.
(c) Find the value of c.
5. (i) In each of the following cases, find a 2×2 matrix that represents
(a) a reflection in the line $y=-x$,
(b) a rotation of 135° anticlockwise about (0,0),
(c) a reflection in the line $y=-x$ followed by a rotation of 135° anticlockwise about $(0,0)$.
(ii) The triangle T has vertices at the points $(1, k),(3,0)$ and $(11,0)$, where k is a constant. Triangle T is transformed onto the triangle T^{\prime} by the matrix

$$
\left(\begin{array}{cc}
6 & -2 \\
1 & 2
\end{array}\right)
$$

Given that the area of triangle T^{\prime} is 364 square units, find the value of k.
6.

$$
\mathbf{A}=\left(\begin{array}{cc}
6 & -2 \\
-4 & 1
\end{array}\right)
$$

and \mathbf{I} is the 2×2 identity matrix.
(a) Prove that

$$
\begin{equation*}
\mathbf{A}^{2}=7 \mathbf{A}+2 \mathbf{I} \tag{2}
\end{equation*}
$$

(b) Hence show that

$$
\mathbf{A}^{-1}=\frac{1}{2}(\mathbf{A}-7 \mathbf{I})
$$

The transformation represented by \mathbf{A} maps the point P onto the point Q.
Given that Q has coordinates $(2 k+8,-2 k-5)$, where k is a constant,
(c) find, in terms of k, the coordinates of P.
7.

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right)
$$

(a) Show that \mathbf{A} is non-singular.
(b) Find \mathbf{B} such that $\mathbf{B A}^{2}=\mathbf{A}$.
8.

$$
\mathbf{A}=\left(\begin{array}{rr}
2 & -2 \\
-1 & 3
\end{array}\right)
$$

(a) Find $\operatorname{det} \mathbf{A}$.
(b) Find \mathbf{A}^{-1}.

The triangle R is transformed to the triangle S by the matrix \mathbf{A}.
Given that the area of triangle S is 72 square units,
(c) find the area of triangle R.
(2)

The triangle S has vertices at the points $(0,4),(8,16)$ and $(12,4)$.
(d) Find the coordinates of the vertices of R.
(4)
9.

$$
\mathbf{M}=\left(\begin{array}{rr}
3 & 4 \\
2 & -5
\end{array}\right)
$$

(a) Find $\operatorname{det} \mathbf{M}$.

The transformation represented by \mathbf{M} maps the point $S(2 a-7, a-1)$, where a is a constant, onto the point $S^{\prime}(25,-14)$.
(b) Find the value of a.

The point R has coordinates $(6,0)$.
Given that O is the origin,
(c) find the area of triangle $O R S$.

Triangle $O R S$ is mapped onto triangle $O R^{\prime} S^{\prime}$ by the transformation represented by \mathbf{M}.
(d) Find the area of triangle $O R^{\prime} S^{\prime}$.

Given that

$$
\mathbf{A}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(e) describe fully the single geometrical transformation represented by \mathbf{A}.

The transformation represented by \mathbf{A} followed by the transformation represented by \mathbf{B} is equivalent to the transformation represented by \mathbf{M}.
(f) Find B.

