Write your name here		
Surname	Other n	names
Pearson Edexcel GCE	Centre Number	Candidate Number
AS and A level Furt Core Pure Mathema		
Practice Paper Matrix algebra (par	t 2)	
You must have: Mathematical Formulae and	Statistical Tables (Pink)	Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 100.
- The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (i)

$$\mathbf{A} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

(a) Describe fully the single transformation represented by the matrix A.

(2)

The matrix **B** represents an enlargement, scale factor –2, with centre the origin.

(b) Write down the matrix **B**.

(1)

(ii)

$$\mathbf{M} = \begin{pmatrix} 3 & k \\ -2 & 3 \end{pmatrix}, \quad \text{where } k \text{ is a positive constant.}$$

Triangle *T* has an area of 16 square units.

Triangle T is transformed onto the triangle T' by the transformation represented by the matrix M.

Given that the area of the triangle T' is 224 square units, find the value of k.

(3)

(Total 6 marks)

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

The transformation represented by $\bf B$ followed by the transformation represented by $\bf A$ is equivalent to the transformation represented by $\bf P$.

(a) Find the matrix **P**.

(2)

Triangle T is transformed to the triangle T' by the transformation represented by \mathbf{P} .

Given that the area of triangle T' is 24 square units,

(b) find the area of triangle T.

(3)

Triangle T' is transformed to the original triangle T by the matrix represented by \mathbf{Q} .

(c) Find the matrix \mathbf{Q} .

(2)

(Total 7 marks)

3.
$$\mathbf{X} = \begin{pmatrix} 1 & a \\ 3 & 2 \end{pmatrix}$$
, where a is a constant.

(a) Find the value of a for which the matrix X is singular.

(2)

$$\mathbf{Y} = \begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}.$$

(b) Find \mathbf{Y}^{-1} .

(2)

The transformation represented by Y maps the point A onto the point B.

Given that B has coordinates $(1 - \lambda, 7\lambda - 2)$, where λ is a constant,

(c) find, in terms of λ , the coordinates of point A.

(4)

(Total 8 marks)

4. (i)
$$\mathbf{A} = \begin{pmatrix} 5k & 3k-1 \\ -3 & k+1 \end{pmatrix}$$
, where k is a real constant.

Given that A is a singular matrix, find the possible values of k.

(4)

$$\mathbf{B} = \begin{pmatrix} 10 & 5 \\ -3 & 3 \end{pmatrix}$$

A triangle T is transformed onto a triangle T' by the transformation represented by the matrix \mathbf{B} .

The vertices of triangle T' have coordinates (0, 0), (-20, 6) and (10c, 6c), where c is a positive constant.

The area of triangle T' is 135 square units.

(a) Find the matrix \mathbf{B}^{-1} .

(2)

(b) Find the coordinates of the vertices of the triangle T, in terms of c where necessary.

(3)

(c) Find the value of c.

(3)

(Total 12 marks)

- 5. (i) In each of the following cases, find a 2×2 matrix that represents
 - (a) a reflection in the line y = -x,
 - (b) a rotation of 135° anticlockwise about (0, 0),
 - (c) a reflection in the line y = -x followed by a rotation of 135° anticlockwise about (0, 0).

(4)

(ii) The triangle T has vertices at the points (1, k), (3, 0) and (11, 0), where k is a constant. Triangle T is transformed onto the triangle T' by the matrix

$$\begin{pmatrix} 6 & -2 \\ 1 & 2 \end{pmatrix}$$

Given that the area of triangle T' is 364 square units, find the value of k.

(6)

(Total 10 marks)

6.

$$\mathbf{A} = \begin{pmatrix} 6 & -2 \\ -4 & 1 \end{pmatrix}$$

and I is the 2×2 identity matrix.

(a) Prove that

$$\mathbf{A}^2 = 7\mathbf{A} + 2\mathbf{I}$$

(2)

(b) Hence show that

$$\mathbf{A}^{-1} = \frac{1}{2}(\mathbf{A} - 7\mathbf{I})$$

(2)

The transformation represented by A maps the point P onto the point Q.

Given that Q has coordinates (2k + 8, -2k - 5), where k is a constant,

(c) find, in terms of k, the coordinates of P.

(4)

(Total 8 marks)

7.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}.$$

(a) Show that A is non-singular.

(2)

(b) Find **B** such that $\mathbf{B}\mathbf{A}^2 = \mathbf{A}$.

(4)

(Total 6 marks)

 $\mathbf{A} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix}$

(a) Find det A.

(1)

(b) Find A^{-1} .

(2)

The triangle R is transformed to the triangle S by the matrix A.

Given that the area of triangle S is 72 square units,

(c) find the area of triangle R.

(2)

The triangle S has vertices at the points (0, 4), (8, 16) and (12, 4).

(d) Find the coordinates of the vertices of R.

(4)

(Total 9 marks)

 $\mathbf{M} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix}.$

(a) Find det M.

(1)

The transformation represented by **M** maps the point S(2a-7, a-1), where a is a constant, onto the point S'(25, -14).

(b) Find the value of a.

(3)

The point R has coordinates (6, 0).

Given that O is the origin,

(c) find the area of triangle ORS.

(2)

Triangle ORS is mapped onto triangle OR'S 'by the transformation represented by M.

(d) Find the area of triangle OR'S'.

(2)

Given that

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(e) describe fully the single geometrical transformation represented by A.

(2)

The transformation represented by A followed by the transformation represented by B is equivalent to the transformation represented by M.

(*f*) Find **B**.

(4)

(Total 14 marks)

TOTAL FOR PAPER: 100 MARKS